import、Code Review、反复调试,这些你觉得麻烦的小事,现在可以“搞定”了。
一文学会在Comate AI IDE中配置Rules
基于NASA数据与React+Three.js技术栈,探索编程智能体在3D仿真领域的应用突破
DeepSeek发布全新开源大模型DeepSeek-Math,其数学推理能力在多项基准测试中超越LLaMA-2,为开发者与企业提供高性价比的AI解决方案。本文从技术突破、应用场景、开源生态三个维度解析其核心价值。
本文汇总了覆盖数学、代码、科学及谜题领域的高质量推理数据集,为开发者提供复现DeepSeek超强推理能力的数据支撑。通过系统化分类与场景化分析,助力构建高效推理模型。
本文探讨如何利用DeepSeek-R1模型与推理时间缩放技术实现GPU内核的自动化生成,通过分析技术原理、实现路径与性能优化策略,为开发者提供降低硬件适配成本、提升计算效率的实践方案。
DeepSeek-R1模型复现研究在100天内取得突破性进展,本文深度解析技术细节、复现难点与工程优化策略,为开发者提供实用指南。
DeepSeek公布推理时Scaling新论文,引发对R2模型的技术猜想与行业影响分析。本文从Scaling Law、技术路径、开发建议三方面展开,探讨AI模型演进的新方向。
本文详细介绍了如何通过LM Studio工具实现DeepSeek R1推理模型的本地部署,涵盖硬件需求、软件配置、模型加载与推理等关键步骤,为开发者提供一站式指南。
本文解析云原生技术如何通过容器化、服务网格、动态编排等特性,为DeepSeek分布式推理提供弹性扩展、资源优化与高可用保障,结合实际场景展示效能提升路径。
本文深度解析仅用2700万参数的推理模型如何通过架构创新与算法优化,在数学推理、代码生成等核心任务上超越DeepSeek-R1和Claude 3.5 Sonnet,揭示小参数模型实现高性能的技术路径与行业启示。
本文揭示提升DeepSeek回复质量的核心技巧——通过精细化的提示工程(Prompt Engineering)设计,结合结构化指令、上下文控制和参数调优,显著改善模型输出质量。90%的用户因未掌握此方法导致回复冗余或偏离需求,掌握后可使回复准确率提升40%以上。
DeepSeek通过动态稀疏计算、自适应训练架构及开源生态构建,重构了AI推理与训练的底层范式。其技术创新不仅突破了传统框架的性能瓶颈,更通过模块化设计降低了AI开发门槛,为行业提供了可复用的高效解决方案。