import、Code Review、反复调试,这些你觉得麻烦的小事,现在可以“搞定”了。
一文学会在Comate AI IDE中配置Rules
基于NASA数据与React+Three.js技术栈,探索编程智能体在3D仿真领域的应用突破
本文深入探讨了GBDT算法在人脸识别身份认证中的应用,从基础原理到实践优化,为开发者提供全面指导。
本文从技术原理、应用场景、开发实践三个维度全面解析人脸识别技术,涵盖算法演进、行业落地案例及代码实现,为开发者提供系统性指导。
本文聚焦3D目标检测领域,探讨如何通过知识蒸馏技术优化学生模型,实现高效轻量化检测。通过理论解析、模型架构设计与案例分析,为开发者提供可落地的技术方案。
本文深入解析DeepSeek模型中temperature参数的作用机制,详细阐述其对生成结果的影响规律,并提供系统化的调优方法与代码示例,帮助开发者精准控制模型输出的创造性与确定性。
本文详细解析DeepSeek模型从部署到推理的全流程,涵盖环境配置、硬件选型、推理优化等关键环节,提供可落地的技术方案与性能调优策略。
本文深度解析DeepSeek模型构建与训练的全流程,涵盖架构设计、数据准备、模型训练、优化策略及部署应用,为开发者提供从理论到实践的完整指南。
本文详细解析DeepSeek生成小模型的技术路径,涵盖模型压缩、知识蒸馏、架构优化等核心方法,结合代码示例说明参数剪枝、量化等关键技术,提供从训练到部署的全流程指导。
在CIKM 2024会议上,Emory大学团队提出将大型语言模型(LLM)蒸馏至图神经网络(GNN)的创新方法,通过构建文本图结构实现知识迁移,在文本分类任务中性能提升6.2%。本文从技术原理、实验验证、应用场景三个维度解析这一突破性成果。
本文详细解析DeepSeek大模型部署全流程,涵盖硬件选型、环境配置、模型优化、服务化部署及监控运维等关键环节,提供可落地的技术方案与实战经验。
北大团队提出的分合蒸馏技术,通过参数解耦与动态重组策略,使5%参数量的轻量级模型达到DeepSeek满血R1的推理性能,同时将单次推理成本压缩至传统方法的1/20,为AI大模型落地提供高性价比解决方案。